1,525 research outputs found

    Regularization, Renormalization and Range: The Nucleon-Nucleon Interaction from Effective Field Theory

    Get PDF
    Regularization and renormalization is discussed in the context of low-energy effective field theory treatments of two or more heavy particles (such as nucleons). It is desirable to regulate the contact interactions from the outset by treating them as having a finite range. The low energy physical observables should be insensitive to this range provided that the range is of a similar or greater scale than that of the interaction. Alternative schemes, such as dimensional regularization, lead to paradoxical conclusions such as the impossibility of repulsive interactions for truly low energy effective theories where all of the exchange particles are integrated out. This difficulty arises because a nonrelativistic field theory with repulsive contact interactions is trivial in the sense that the SS matrix is unity and the renormalized coupling constant zero. Possible consequences of low energy attraction are also discussed. It is argued that in the case of large or small scattering lengths, the region of validity of effective field theory expansion is much larger if the contact interactions are given a finite range from the beginning.Comment: 7 page

    The Long and Short of Nuclear Effective Field Theory Expansions

    Get PDF
    Nonperturbative effective field theory calculations for NN scattering seem to break down at rather low momenta. By examining several toy models, we clarify how effective field theory expansions can in general be used to properly separate long- and short-range effects. We find that one-pion exchange has a large effect on the scattering phase shift near poles in the amplitude, but otherwise can be treated perturbatively. Analysis of a toy model that reproduces 1S0 NN scattering data rather well suggests that failures of effective field theories for momenta above the pion mass can be due to short-range physics rather than the treatment of pion exchange. We discuss the implications this has for extending the applicability of effective field theories.Comment: 22 pages, 9 figures, references corrected, minor modification

    Low Energy Theorems For Nucleon-Nucleon Scattering

    Get PDF
    Low energy theorems are derived for the coefficients of the effective range expansion in s-wave nucleon-nucleon scattering valid to leading order in an expansion in which both mπm_\pi and 1/a1/a (where aa is the scattering length) are treated as small mass scales. Comparisons with phase shift data, however, reveal a pattern of gross violations of the theorems for all coefficients in both the 1S0^1S_0 and 3S1^3S_1 channels. Analogous theorems are developed for the energy dependence Ï”\epsilon parameter which describes 3S1−3D1^3S_1 - ^3D_1 mixing. These theorems are also violated. These failures strongly suggest that the physical value of mπm_\pi is too large for the chiral expansion to be valid in this context. Comparisons of mπm_\pi with phenomenological scales known to arise in the two-nucleon problem support this conjecture.Comment: 12 pages, 1 figure, 1 table; appendix added to discuss behavior in chiral limit; minor revisions including revised figure reference to recent work adde

    The NN scattering 3S1-3D1 mixing angle at NNLO

    Full text link
    The 3S1-3D1 mixing angle for nucleon-nucleon scattering, epsilon_1, is calculated to next-to-next-to-leading order in an effective field theory with perturbative pions. Without pions, the low energy theory fits the observed epsilon_1 well for momenta less than ∌50\sim 50 MeV. Including pions perturbatively significantly improves the agreement with data for momenta up to ∌150\sim 150 MeV with one less parameter. Furthermore, for these momenta the accuracy of our calculation is similar to an effective field theory calculation in which the pion is treated non-perturbatively. This gives phenomenological support for a perturbative treatment of pions in low energy two-nucleon processes. We explain why it is necessary to perform spin and isospin traces in d dimensions when regulating divergences with dimensional regularization in higher partial wave amplitudes.Comment: 17 pages, journal versio

    Time-reversal symmetric resolution of unity without background integrals in open quantum systems

    Get PDF
    We present a new complete set of states for a class of open quantum systems, to be used in expansion of the Green's function and the time-evolution operator. A remarkable feature of the complete set is that it observes time-reversal symmetry in the sense that it contains decaying states (resonant states) and growing states (anti-resonant states) parallelly. We can thereby pinpoint the occurrence of the breaking of time-reversal symmetry at the choice of whether we solve Schroedinger equation as an initial-condition problem or a terminal-condition problem. Another feature of the complete set is that in the subspace of the central scattering area of the system, it consists of contributions of all states with point spectra but does not contain any background integrals. In computing the time evolution, we can clearly see contribution of which point spectrum produces which time dependence. In the whole infinite state space, the complete set does contain an integral but it is over unperturbed eigenstates of the environmental area of the system and hence can be calculated analytically. We demonstrate the usefulness of the complete set by computing explicitly the survival probability and the escaping probability as well as the dynamics of wave packets. The origin of each term of matrix elements is clear in our formulation, particularly the exponential decays due to the resonance poles.Comment: 62 pages, 13 figure

    Exhaustive and Efficient Constraint Propagation: A Semi-Supervised Learning Perspective and Its Applications

    Full text link
    This paper presents a novel pairwise constraint propagation approach by decomposing the challenging constraint propagation problem into a set of independent semi-supervised learning subproblems which can be solved in quadratic time using label propagation based on k-nearest neighbor graphs. Considering that this time cost is proportional to the number of all possible pairwise constraints, our approach actually provides an efficient solution for exhaustively propagating pairwise constraints throughout the entire dataset. The resulting exhaustive set of propagated pairwise constraints are further used to adjust the similarity matrix for constrained spectral clustering. Other than the traditional constraint propagation on single-source data, our approach is also extended to more challenging constraint propagation on multi-source data where each pairwise constraint is defined over a pair of data points from different sources. This multi-source constraint propagation has an important application to cross-modal multimedia retrieval. Extensive results have shown the superior performance of our approach.Comment: The short version of this paper appears as oral paper in ECCV 201

    Charge-Dependence of the Nucleon-Nucleon Interaction

    Full text link
    Based upon the Bonn meson-exchange-model for the nucleon-nucleon (NNNN) interaction, we calculate the charge-independence breaking (CIB) of the NNNN interaction due to pion-mass splitting. Besides the one-pion-exchange (OPE), we take into account the 2π2\pi-exchange model and contributions from three and four irreducible pion exchanges. We calculate the CIB differences in the 1S0^1S_0 effective range parameters as well as phase shift differences for partial waves up to total angular momentum J=4 and laboratory energies below 300 MeV. We find that the CIB effect from OPE dominates in all partial waves. However, the CIB effects from the 2π2\pi model are noticable up to D-waves and amount to about 40% of the OPE CIB-contribution in some partial waves, at 300 MeV. The effects from 3π\pi and 4π\pi contributions are negligible except in 1S0^1S_0 and 3P2^3P_2.Comment: 12 pages, RevTex, 14 figure

    Pairing in low-density Fermi gases

    Get PDF
    We consider pairing in a dilute system of Fermions with a short-range interaction. While the theory is ill-defined for a contact interaction, the BCS equations can be solved in the leading order of low-energy effective field theory. The integrals are evaluated with the dimensional regularization technique, giving analytic formulas relating the pairing gap, the density, and the energy density to the two-particle scattering length.Comment: 12 pages, 2 EPS-figures, uses psfig.sty, eq.(9) correcte

    QED on Curved Background and on Manifolds with Boundaries: Unitarity versus Covariance

    Get PDF
    Some recent results show that the covariant path integral and the integral over physical degrees of freedom give contradicting results on curved background and on manifolds with boundaries. This looks like a conflict between unitarity and covariance. We argue that this effect is due to the use of non-covariant measure on the space of physical degrees of freedom. Starting with the reduced phase space path integral and using covariant measure throughout computations we recover standard path integral in the Lorentz gauge and the Moss and Poletti BRST-invariant boundary conditions. We also demonstrate by direct calculations that in the approach based on Gaussian path integral on the space of physical degrees of freedom some basic symmetries are broken.Comment: 29 pages, LaTEX, no figure

    Near-Earth asteroids spectroscopic survey at Isaac Newton Telescope

    Full text link
    The population of near-Earth asteroids (NEAs) shows a large variety of objects in terms of physical and dynamical properties. They are subject to planetary encounters and to strong solar wind and radiation effects. Their study is also motivated by practical reasons regarding space exploration and long-term probability of impact with the Earth. We aim to spectrally characterize a significant sample of NEAs with sizes in the range of ∌\sim0.25 - 5.5 km (categorized as large), and search for connections between their spectral types and the orbital parameters. Optical spectra of NEAs were obtained using the Isaac Newton Telescope (INT) equipped with the IDS spectrograph. These observations are analyzed using taxonomic classification and by comparison with laboratory spectra of meteorites. A total number of 76 NEAs were observed. We classified 44 of them as Q/S-complex, 16 as B/C-complex, eight as V-types, and another eight belong to the remaining taxonomic classes. Our sample contains 27 asteroids categorized as potentially hazardous and 31 possible targets for space missions including (459872) 2014 EK24, (436724) 2011 UW158, and (67367) 2000 LY27. The spectral data corresponding to (276049) 2002 CE26 and (385186) 1994 AW1 shows the 0.7 ÎŒ\mum feature which indicates the presence of hydrated minerals on their surface. We report that Q-types have the lowest perihelia (a median value and absolute deviation of 0.797±0.2440.797\pm0.244 AU) and are systematically larger than the S-type asteroids observed in our sample. We explain these observational evidences by thermal fatigue fragmentation as the main process for the rejuvenation of NEA surfaces. In general terms, the taxonomic distribution of our sample is similar to the previous studies and matches the broad groups of the inner main belt asteroids. Nevertheless, we found a wide diversity of spectra compared to the standard taxonomic types.Comment: Accepted in Astronomy & Astrophysics (A&A
    • 

    corecore